
Generalized approach to Ewald sums

R. E. Johnson
Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4

S. Ranganathan
Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4

�Received 2 August 2006; revised manuscript received 30 November 2006; published 22 May 2007�

We derive Ewald sum formulas for potential energy and force for a system of point charges interacting with
an arbitrary, long-range central potential. The system is made neutral by a uniform background of opposite
charge interacting with the same potential. These formulas can be readily used in computer numerical simu-
lations of model physical systems. In particular, expressions for the potential energy and the force have been
obtained in both two and three dimensions for Coulomb and other power-law potentials, Yukawa systems, and
for an electronic bilayer. We discuss numerical results and their accuracy for various systems and, based on our
analysis, suggest values to be used for the parameters that appear in the Ewald sums.
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I. INTRODUCTION

A system of point charged particles embedded in a uni-
form background of opposite charge �thereby ensuring over-
all electrical neutrality� has been a subject of research for a
number of years. Such systems have been investigated
through molecular dynamics �MD� computer simulations in
both two and three dimensions and they have proved very
successful. However, the MD algorithm that is used for
short-range forces such as Lennard Jones is not appropriate:
the use of periodic boundary conditions and the minimum
imaging criterion works well for short-range potentials since
the potential can be truncated at half-the-box length without
significant errors, and long-range corrections if required can
be formulated. But, if the interparticle force is considered to
be long range, as is the case in this study, truncation is no
longer an option and the systems require special treatment.
The interaction of each particle with all other particles in the
basic cell, with all its periodic images and with the uniform
neutralizing background charge, must be included. In addi-
tion, interaction of a particle with all its periodic images
must also be included. Such a treatment is efficiently handled
via the Ewald �1� technique. Such evaluations have been
performed on systems interacting with a Coulomb potential
in both three dimensions �3D� �2,3� and two-dimensions
�2D� �4,5�, three-dimensional Yukawa potential �6,7�, and
Coulombic bilayers �8,9�. Various approaches, often involv-
ing solutions of Poisson type of partial differential equations,
have been used to obtain the Ewald sum expressions for
these systems. Here we present a simple mathematical
recipe, based only on the error function, with which to derive
the Ewald sum that is applicable to any long-range central
potential. Expressions for the potential energy and the corre-
sponding forces are obtained for two- and three-dimensional
systems. Detailed physical arguments are not required in the
derivation of these formulas. The error function approach has
been used before in obtaining the Ewald sum, but only to
Coulombic systems. Mathematical expressions and numeri-
cal results for the special cases of Coulomb potential, other
power-law potentials, Yukawa systems, and the electron gas
bilayer are presented.

II. EWALD FORMULAS FOR ARBITRARY POTENTIAL

Consider a system of electrons with charge q interacting
with a long-range central potential ��r�; the basic cell is a
cube in 3D or a square in 2D with the length of a side L and
�=L3 in 3D, L2 in 2D; there are N electrons in the cell. Let
p�=L�n1 ,n2 ,n3�, where the nj are integers with n3=0 for 2D.
The potential could be ��r�=q2r−1e−�r with �=0 for a Cou-
lomb potential and ��0 for a Yukawa potential, or it could
be a power-law potential ��r�=q2r−�1+�� where 0���1. In
order to maintain an overall charge neutrality of the system,
there is also a uniform background of opposite charge inter-
acting with the same interparticle potential. Due to the long-
range nature of the potential, the interaction of each particle
with the other �N−1� particles in the basic cell, with all
images of the N particles and with the uniform neutralizing
background, must all be included. The potential energy of a
particle at r�i in the basic cell due to another at r� j�r�i, all its
images, and the uniform background can be written as

v�rij� = �
p�

���r�ij + p� �� − �
p�

�−1�
p�

du���u� , �1�

where r�ij =r�i−r� j. The total potential at r�i can be written as a
sum of two terms:

V�ri� = VD�ri� + VS, �2�

where VD�ri� is due to all other particles in the basic cell and
their respective images, and VS, the self-energy, is a constant,
which is due to all images of r�i itself:

VD�ri� = �
j�i
j=1

N

v�rij�

= �
j�i
j=1

N

�
p�

���r�ij + p��� − �N − 1��−1� du���u� , �3�
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VS = v�rii�

= �
p��0

���p� �� − �−1� du���u�

= lim
r→0��p�

���r� + p� �� − ��r�	 − �−1� du���u� . �4�

The total potential energy of the unit cell is then given by

U =
1

2�
i=1

N

V�ri� . �5�

VD�ri� is the contribution to the potential from distinct
particles, while VS is from each particle with its own periodic
images, all in the presence of the uniform neutralizing back-
ground charge. It is readily seen that only VD�ri� will con-
tribute to the force; therefore, in an MD calculation where
the force is required, VS is not of any consequence. If a
calculation of the potential energy is required, one must take
into account the self-energy exactly. We consider the entire
expression for the total potential energy in our analysis. To
keep the formulation as general as possible and applicable to
any central potential, we introduce the error function and its
complement with two variables, � and �. Considering VD�ri�
first, this yields

VD�ri� = �
j�i
j=1

N 
�
p�

���r�ij + p���erfc���r�ij + p���� + �
p�

���r�ij + p���

	erf���r�ij + p���� − �−1� du���u�� . �6�

The value of the exponent � should be determined such that
VS �Eq. �4�� can be numerically evaluated �see Eq. �25� in
Sec. III�; for instance, the exponent is 1 if the potential has in
it an r−1 dependence �Coulomb, Yukawa�, and 1+� if the
potential has in it a r−�1+�� dependence �power law�; the value
of �, which has the dimensions of 1 /L�, will be dictated by
the convergence of the infinite series involved. The second
term has period L in 2D or 3D and can be replaced by its
Fourier series to yield

VD�ri� = �
j�i
j=1

N 
�
p�

���r�ij + p� ��erfc���r�ij + p����

+ �
g��0�

C�g;��eig��r�ij + C̃�0;��� , �7�

where g� =2
��1 ,�2 ,�3� /L, the � j are integers, and �3=0 for
2D; then

C�g;�� = �−1� du�e−ig��u���u�erf��u�� if �g� � = g � 0,

and

C̃�0;�� = C�0;�� − �−1� du���u�

= − �−1� du���u�erfc��u�� . �8�

The first term in Eq. �7� is the real-space series while the
second term is the reciprocal-space series. VS is a constant
and independent of the particle configuration; its numerical
values for some specific potentials are given in the next sec-
tion. Note that our system is made up of point charges in the
presence of a uniform background of opposite charges;
hence, this self-energy is due to the bare potential in the
presence of the uniform background.

The Ewald sum expression for the potential energy must
be independent of the error function parameter �. This can
be shown to be true by taking the derivative of Eq. �7� and
using Eq. �8�:

�VD�ri�
��

=
2

�

− �
p�

���r� + p� ���r� + p� �e−�2�r� + p� �2

+
1

�
�
g��0�

eig��r�� du�e−ig��u���u�ue−�2u2�
+

2
�
�

� du���u�e−�2u2
= 0, �9�

since the Fourier series representation of the first term is
precisely the negative of the sum of the second and third
terms; � has been chosen to be 1 and the summation over j
has been removed for neatness sake. This independence must
be for every type of system and for any configuration of the
particles in it. However, in MD calculations one often in-
cludes only the p=0 terms �with the minimum imaging con-
vention� and truncates the sum on g�; therefore, the total po-
tential energy in such a calculation does depend on �. Then
a study of the � independence of the calculated potential
energy may be used to determine a range of � for which
these approximations are tolerable.

Since the potential is assumed to be central, the expres-
sions for the Fourier coefficients that appear in VD�ri� in Eqs.
�7� and �8� can be reduced to single integrals. In 3D the
expressions are

C�g;�� =
4


L3

1

g
�

0

�

duu��u�sin�gu�erf��u�� if g � 0,

C̃�0;�� = −
4


L3 �
0

�

duu2��u�erfc��u�� . �10�

In 2D they are

C�g;�� =
2


L2 �
0

�

duu��u�J0�gu�erf��u�� if g � 0,
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C̃�0;�� = −
2


L2 �
0

�

duu��u�erfc��u�� . �11�

Of course, the model potential must be such that these inte-
grals exist. Depending on the form of the potential, it may be
possible to reduce these integrals to simpler analytic expres-
sions. If not, they can be evaluated numerically within an
MD calculation, using a Gauss quadrature method for ex-
ample.

The corresponding Ewald expressions for the force on a
particle are needed in MD simulations, and can be obtained
from these potential energy formulas. Of course, these do not
depend on the self-terms and are also independent of �. The
force on particle 1, for example, due to all others is

F�1�r�1� = �
p�

��
j=1

N
r�1j + p�

�r�1j + p���− ����r�1j + p���erfc���r�1j + p����

+
2�

�

��r�1j + p���−1���r�1j + p���e−�2�r�1j + p��2�	

+ �
g��0�

g�C�g;���
j=2

N

sin�g� � r�1j� . �12�

Equations �4�, �7�, and �12�, with supporting Eqs. �10� and
�11�, are applicable to any central, long-range interparticle
potential. These equations constitute the main results of our
paper. We now apply these equations for specific potentials.

�1� For the three-dimensional Coulomb potential, ��r�
=q2r−1, our formulation yields the well-known result

C�g;�� =
4
q2

L3

e−g2/4�2

g2 if g � 0, C̃�0;�� = −

q2

L3�2 .

�13�

�2� For a three-dimensional power potential, ��r�
=q2r−�1+��, it yields

C�g;�� =
4
q2

L3

1

g
�

0

�

duu−� sin�gu�erf��u1+�� if g � 0,

C̃�0;�� = −
4
q2

L3 �
0

�

duu1−� erfc��u1+��

= −
4
q2

L3


�3/�2 + 2���
�
�2 − ����2−��/�1+��

. �14�

�3� For a three-dimensional Yukawa potential, ��r�
=q2r−1e−�r, it yields

C�g;�� =
4
q2

L3

1

g
�

0

�

due−�u sin�gu�erf��u� if g � 0,

C̃�0;�� = −
4
q2

L3 �
0

�

duue−�u erfc��u�

= −
4
q2

L3

1

�2
1 −
�

�
�
− e�2/4�2�1 −

�2

2�2	
	erfc� �

2�
	� . �15�

�4� For the two-dimensional Coulomb potential, ��r�
=q2r−1, it yields the well-known result

C�g;�� =
2
q2

L2

erfc�g/2��
g

for g � 0,

C̃�0;�� = −
2�
q2

L2�
. �16�

�5� For a two-dimensional power potential, ��r�
=q2r−�1+��, it yields

C�g;�� =
2
q2

L2 �
0

�

duu−�J0�gu�erf��u1+�� for g � 0,

C̃�0;�� = −
2
q2

L2 �
0

�

duu−� erfc��u1+��

= −
2
q2

L2


�1/�1 + ���
�
�1 − ����1−��/�1+��

. �17�

�6� For a two-dimensional Yukawa potential, ��r�
=q2r−1e−�r, it yields

C�g;�� =
2
q2

L2 �
0

�

due−�uJ0�gu�erf��u� for g � 0,

C̃�0;�� = −
2
q2

L2 �
0

�

due−�u erfc��u�

= −
2
q2

L2

1

�
�1 − e�2/4�2

erfc��/2��� . �18�

The integrals for C�g ;�� in Eqs. �14�, �15�, �17�, and �18�
need to be evaluated numerically as required.

There is another version of the Ewald sum for the Yukawa
potential in 3D which was obtained by Salin and Caillol �7�
starting from the Helmholtz equation. Their formula involves
the screening parameter � in the error function in the real-
space sum, while our formulation does not. We have derived
the analogous result for two-dimensional Yukawa: it is
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v�r� =
1

2�
p�

q2

�r� + p� �

e−��r�+p� � erfc���r� + p� � −

�

2�
	

+ e��r�+p� � erfc���r� + p� � +
�

2�
	�

+
2
q2

L2 ��
g��0�

D�g;��eig��r� + D̃�0;��	 ,

where

D�g:�� =
erfc��g2 + �2/2��

�g2 + �2
if g � 0,

D̃�0;�� = −
1

�
�1 − erfc��/2��� . �19�

�7� In the bilayer problem two parallel layers are sepa-
rated by distance d. The potential energy at r�i in one of the
layers due to all particles in both layers and the neutralizing
background in both is

V�ri� = VD�ri� + VS + Vinter�ri� , �20�

where VD and VS for particles in the same plane are given by
Eqs. �3� and �4� with Ewald sum expressions �7� and �11�.
The interlayer potential is

Vinter�ri� = �
j=1

N

�
p�

���r�i − �� j + p� �� −

1

L2 � du����u2 + d2��
= �

j=1

N 
�
p�

���r�i − �� j + p� ��erfc���r�i − �� j + p���

+ �
g��0�

B�g;�,d�eig��r� + B̃�0;�,d�� , �21�

where ri= �xi ,yi ,0� is in one plane, �� j = �x̄j , ȳ j ,d� is in the
other, and p� =L�n1 ,n2 ,0�, where n1 ,n2 are integers. The Fou-
rier coefficients in Eq. �21� are

B�g;�,d� =
2


L2 �
0

�

duu���u2 + d2�J0�gu�

	erf���u2 + d2� if g � 0,

B̃�g;0,d� = −
2


L2 �
0

�

duu���u2 + d2�erfc���u2 + d2� .

�22�

For the Coulomb potential these integrals yield

B�g;�,d� =
2


L2

q2

2g

e−gd erfc� g

2�
− �d	 + egd erfc� g

2�

+ �d	� if g � 0,

B̃�g;0,d� = −
2
q2

L2 � 1
�
�

e−�2d2
+ d erfc��d�	 . �23�

The total force on particle 1 in one of the layers is

F�1�r�1� = �
p�

��
j=1

N
s�1j

�s�1j�
�− ����s�1j��erfc���s�1j��

+
2�

�

���s�1j��e−�2�s�1j�

2	 + �
p�

�
j=1

N
r�1 − �� j + p�

�d�1j�

	�− ����d�1j��erfc���d�1j�� +
2�

�

���d�1j��e−�2�d�1j�

2	
+ �

g��0�
g��C�g;���

j=2

N

sin�g� � �r�1 − r� j��

+ B�g;�,d��
j=1

N

sin�g� � �r�1 − �� j��	 , �24�

where s�1j =r�1−r� j + p� and d�1j =r�1−�� j + p� .
The generalized power law and Yukawa results for 3D

and 2D, given by Eqs. �14�, �15�, �17�, and �18� are new to
the best of our knowledge. The 3D Coulomb result, given by
Eq. �13� and the 2D Coulomb result, given by Eq. �16�, are
in agreement with published results. The bilayer result, Eq.
�21�, previously obtained by us �8� using this procedure
agrees with that obtained by Weis et al. using a different
procedure �9�.

III. NUMERICAL CONSIDERATIONS

The formulas listed in the previous section are exact. In
any application one must select the potential and dimension
of the system to be studied along with the thermodynamic
state of the system. It should be noted that there are three
parameters in any Ewald sum: the vector parameters p� and g�
associated with the real space and the reciprocal space, re-
spectively, and the scalar parameter �. In what follows, all
quantities are dimensionless: distances in units of the
Wigner-Seitz radius a, energies in units of q2 /a; a is
�3/4n
�1/3 in 3D and �1/n
�1/2 in 2D, where n is the particle
density. Hence the particle density in dimensionless units is
3 /4
 in 3D and 1/
 in 2D. In our calculations, some results
of which are presented here, the number of particles is N
=256 in 3D and 512 in 2D. This gives a box length L of
10.225 in 3D and 40.106 in 2D. Each term in the correspond-
ing expression is evaluated numerically for a chosen value of
the Ewald parameter �.

To see that our equations are indeed correct, we first com-
pare our results with those in the literature. We have already
established that our exact results are independent of �, as
they must be. The one-component plasma system in which
the point charges are immersed in a uniform background of
opposite charge and interacting with a Coulomb potential has
been studied through MD both in 3D and 2D. Using different
approaches, Brush et al. �2� and Tosi �10� have derived ex-
pressions for the total potential energy for such a system in
3D, while Totsuji �4� has done the same for 2D. To make a
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full comparison, we need to compute the self-energy VS. If
one uses the same error function formalism, Eq. �4� can be
written as

VS = �
p��0

���p� ��erfc���p���� + �
g��0�

C�g;�� + C̃�0;��

+ lim
p→0


��p�erfc��p�� − ��p�� , �25�

which is also independent of �. The last term in Eq. �25�
yields − 2�

�

for Coulomb or Yukawa or power law ��r�

=q2r−�1+�� with 0���1 potentials. VS is independent of the
particle configuration and should be multiplied by 1

2N to ob-
tain the total self-energy contribution to the potential energy.
In evaluating Eq. �25�, the first term can be safely neglected
even for �L� as small as four, since erfc�4��10−8. Our cal-
culations yield 35.481 for three-dimensional Coulomb and
24.896 for two-dimensional Coulomb, essentially indepen-
dent of � and particle configuration: these agree very
well with published results for the self-energy given by
N
2L

8.913

 �=35.479� for 3D �11� and N

2L3.900�=24.894� for 2D
�4�. Our expressions for VD�ri� and hence for the total poten-
tial energy U agree exactly with those in literature for both
three-dimensional Coulomb �2,10� and two-dimensional
Coulomb �4� systems. It should be noted the expression in
Allen and Tildesley �12� refers to a system of point charges
that is made neutral by point charges of opposite sign and
hence differs from our system.

For a bilayer, our expressions for the total potential en-
ergy and for the self-energy agree with those of Weis et al.
�9�, though the approaches are different. Thus our results can
be applied with confidence to any three-dimensional and
two-dimensional long-range central potentials.

One needs to truncate the infinite series in both real space
and reciprocal space in order to obtain numerical values for
the force �or potential energy� that are needed in any com-
puter simulation. The real-space sum truncation would then
involve another parameter Rcut, the real-space forces cutoff,
defined by �r�ij + p�L � �Rcut. But in MD simulations, one often
uses the minimum imaging criterion and this implies Rcut be
equal to half the boxlength. Since any other value of Rcut
would introduce further complexities in the MD program and
place large demands on computer processing, we have fol-
lowed the usual procedure of including only the basic cell

�i.e., p� =0� term only� when evaluating the real-space contri-
bution; this term is dominant in the real-space sum, more so
for larger � and hence one must choose � that is not too
small. On the other hand, � should be small enough so that
the sum of the infinite series in the g space can be approxi-
mated well by including as few terms as possible. We seek a
range of � for which both requirements are met.

It is not difficult to determine acceptable values of �. This
can be done by studying the � independence of the potential
energy numerically. To do this we created various particle
configurations and evaluated each term of the potential en-
ergy expressions for selected values of �. We studied UD
=�i=1

N VD�ri� with VD�ri� given by Eq. �7�. This was done for
the Coulomb, power law, and Yukawa potentials in both 2D
and 3D; these calculations require Eqs. �13�–�18�. For the

bilayer we have studied the Coulomb potential for selected
values of the layer separation distance d; this requires Eqs.
�20�–�23�. We truncated the g-space series using a safe value
for the largest magnitude of � �g=2
� /L�, 8 for 3D, and 16
for 2D. Typical results are shown in Fig. 1�a� for a three-
dimensional Coulomb potential, Fig. 1�b� for a 3D r−�1+��

with �=0.4 power-law potential and Fig. 1�c� for a two-
dimensional Yukawa potential with �=0.5. An equilibrium

FIG. 1. Potential energy terms as a function of the Ewald pa-
rameter �L� for a typical equilibrium particle configuration in �a�
3D with Coulomb interaction, �b� 3D with a power-law potential,
r−�1+�� with �=0.4 and �c� two-dimensional Yukawa potential with
�=0.5: UD=�i=1

N VD�ri� is labeled �1�; VD�ri� given by Eq. �7� is the
sum of three terms: the real-space contribution to UD is �2�, the

reciprocal space is �3�, and the C̃�0,�� is �4�. p� =0 and �max=8 for
3D and 16 for 2D.
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configuration of the particles, corresponding to a given ther-
modynamic state, was chosen. The figures show potential
energy contributions from the real-space term �line 2�, the

reciprocal-space term �line 3�, and the C̃�0,�� term �line 4�,
along with their sum, the UD contribution to the total poten-
tial energy �line 1� as a function of �L�. In all cases, excel-
lent agreement confirming the � independence of the results
for a certain range of � was obtained. Since the real-space
terms contain �, the accuracy of our results justifies the ne-

glect of the p� �0� terms. Since one cannot deduce the accu-
racy of the constancy of our results from the graph, we
present the actual numbers; the variation in UD is from
−190.70 to −190.68 in 6��L�10 for three-dimensional
Coulomb, from −263.81 to −264.02 in 6��L1+��10 for
three-dimensional power and from −442.95 to −442.96 in

2��L�16 for two-dimensional Yukawa. These errors agree
with the order-of-magnitude analysis of Perram et al. �13� for
three-dimensional Coulomb systems, where they show that �
and �max should be chosen so that ��exp�−�2L2 /4� and �
�exp�−
2�max

2 /�2L2�, where � is the error estimate; the
choice of �L=6 and �max=6 would give ��10−4, consistent
with our numerical findings. Although our results indicate
that a range of � would be acceptable in a MD calculation,
our conclusion is that recommended values for �L� are 6 in
3D and 8 in 2D, given that a smaller � is preferred, since it
then requires fewer terms in the g-space sum.

Having chosen p� and �, we then analyzed the results for
various choices of g� in the reciprocal-space term. The prob-
lem of determining an acceptable set of g� terms is consider-
ably more difficult for some potentials, although it is simple
for Coulomb systems. We studied the choice of g by consid-
ering C�g ,�� as given by Eqs. �10� and �11� as sequences on
integer � where g=2
� /L. For the Coulomb potential it is
obvious that the sequences corresponding to Eqs. �13� and
�16� converge to 0 rapidly and conclude that �max of 6 would
be sufficient.

However, for non-Coulomb potentials, the integrals in
Eqs. �10� and �11� must be studied carefully. We considered
two non-Coulomb potentials in both 2D and 3D to analyze
consistency in our results: Yukawa, r−1e−�r for � in �0,1� and
power law, r−�1+�� for � in �0,1�. The C�g ,�� integrals in Eqs.
�14�, �15�, �17�, and �18� are best evaluated numerically us-
ing erfc rather than erf according to

�
0

�

dxe−�x sin�gx�erf��x�

=
g

g2 + �2 − �
0

�

dxe−�x sin�gx�erfc��x� , �26�

�
0

�

dxe−�xJ0�gx�erf��x�

=
1

�g2 + �2
− �

0

�

dxe−�xJ0�gx�erfc��x� , �27�

for Yukawa potential, and

TABLE I. UD contribution to the total potential energy for Yukawa potential in 3D and 2D for various
values of �. p� =0 and �L=6 for 3D �8 for 2D�. Third �sixth� and fourth �seventh� columns indicate the
minimum values of �max needed to guarantee an error in the total potential energy of no more than 1% and
0.1%, respectively.

3D 2D

�max for error in UD of �max for error in UD of

� −UD 1% 0.1% −UD 1% 0.1%

0 190.70 4 5 534.59 3 5

0.1 189.25 4 8 525.2 6 15

0.2 185.16 5 10 506.0 9 24

0.3 179.05 5 10 484 9 25

0.4 171.64 7 10 463 11 27

0.5 163.55 7 10 443 13 33
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FIG. 2. Potential energy UD as a function of �max for a three-
dimensional power-law potential, r−�1+�� with �=0.3. p� =0 and
�L�=6. Solid line and dashed line using modified and normal error
function, respectively.
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�
0

�

dxx−� sin�gx�erf��x1+�� =

�1 − ��

g1−� sin

�1 − ��

2

− �
0

�

dxx−� sin�gx�erfc��x1+�� ,

�28�

�
0

�

dxx−�J0�gx�erf��x1+�� =

��1 − ��/2�

2�g1−�
��1 + ��/2�

− �
0

�

dxx−�J0�gx�erfc��x1+�� .

�29�

for the power potential. The four integrals containing erfc
can be evaluated accurately using Gauss quadrature with a
combination of Legendre and Laguerre abscissas and
weights. We evaluated C�g ,�� using Eqs. �14�, �15�, �17�,
and �18� for selected values of � and � for various values of
�. In every case, these sequences are positive, monotone de-
creasing, and convergent to 0. The potential energy UD is
then computed as a function of �max. The number of g� vec-
tors is determined by letting the x component of � take on
values from 0 to �max, while the y and z components take on
values from −�max to �max, subject to the constraint that the
magnitude of � not exceed�max. A typical plot of UD as a
function �max is shown in Fig. 2 for a 3D r−�1+�� with ��0.3
power-law potential. The parameter p� is set at 0 and �L� at
6. UD for this potential can be obtained by using the regular
or the modified error function ��=1 or 1+��: the two results
are shown by the dashed and solid lines, respectively. It is
clearly seen that the use of the modified error function is
vastly superior. This is true for all values of � and for 3D and
2D. In general, potential energy exhibits damped oscillations
before settling to a constant value. The smaller the �, the
smaller are the oscillations and the quicker is the approach to
the constant value. Thus one truncates the g-space terms de-
pending on the accuracy needed. For example, for a three-
dimensional power-law potential with �=0.3, an error of 1%

in the total potential energy can be achieved if one chooses
�max=4, but �max=7 is required for a 0.1% error, assuming
the use of the modified error function. We have done similar
analysis for Yukawa potential and have incorporated our re-
sults in Tables I and II. These provide the exact values of UD
obtained from their constant values at large �max, and �max
values that are required to obtain an accuracy of 1% and
0.1%. Table I is for selected values of � for Yukawa potential
in both 3D and 2D; � was chosen as 6/L in 3D and 8/L in
2D. Table II gives the same for the power potential as a
function of �.

It is seen that each sequence for 3D converges much
faster than the corresponding sequence for 2D. This is fortu-
nate since there are many more g� vectors for a given � in 3D
than in 2D. The infinite series which appear in Eq. �7� for
potential energy and Eq. �12� for the interparticle force are
Fourier series and have partial sum sequences which are not
monotone: consequently, these series do converge faster than
the corresponding absolute value series. It should be stressed
that numerical checks on the accuracy and errors in the po-
tential energy and the force should be carried out for each
system before beginning the computer simulation.

IV. CONCLUSIONS

We have formulated a universal approach, based on the
error function, to the derivation of the Ewald sum for an
arbitrary long-range central interparticle potential in both
three and two dimensions. The appropriate expressions for
the total potential and the force have been obtained. We have
applied the formalism to a number of specific potentials that
include Coulomb, Yukawa, and power-law potentials and
done a study of the numerical considerations, since choice of
parameters and truncations of infinite series are involved.
Based on our analysis, we have suggested values to be used
for the parameters and truncation in the various Ewald sums.
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TABLE II. Same as Table I, except for the power potential, for various values of �.

3D 2D

�max for error in UD of �max for error in UD of

� −UD 1% 0.1% −UD 1% 0.1%

0 190.70 4 5 534.59 3 5

0.1 207.95 4 6 600.0 3 6

0.2 225.6 4 7 678.2 4 8

0.3 244.0 4 7 776 4 20

0.4 263.5 4 8 906 5 35

0.5 284.3 4 8 1085 5 70
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